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ABSTRACT

A model is proposed for the maser amplification of the
emission lines of interstellar OH. Weak incoherent microwave
radiation from an external source passes through an OH cloud
and is enhanced by maser action. The amplifying medium 1is
considered as a collection of thermally moving two-level
molecules which undergo excitation to the upper'level at a
steady pump rate, The details of the pumping mechanism as well
as the state of polarizatilion of the radiation are not considered.
The natural linewidth and the spontaneous decay of the two levels
are represented by phenomenological constants Yab? Ya and Yp o
The Maxwell?s equations for the electromégnetic field are coupled
to the quantum mechenical equatiens of motion for the molecular
density matrix in a self-consistent way. After reducing the
equations on the basis of slowly varying amplitude and narrow
passband approximations, a single equation is derived for the
spectral density by assuming that the incoming radiation is
completely incoherent. The sSteady-state solutions of this equation
are investigated analytically and the equation itself is integrated
numerically for several kinds of Doppler broadening., It is found
that in the absence of molecular motion, the spectfum approeches
a §-function at the resonance frequency as the radiation travels
through the medium. , However when Doppler broadening is intro-
duced, the behaviour of the spectral density is dependent upon the
relative magnitude of the Doppler width with respect to the homoge-

neous linewidth and upon the amount by which threshold is exceeded.



I.. INTRODUCTION

Since-the discovery of the first microwave lines of the
interstellar hydroxyl radical in October 1963, there have been
extensive astronomical obseJ:'va,fcionsl—7 of four radio lines at
1612, 1665, 1667 and 1720 MHz, arising from transitions between
the hyperfine levels of the A doublet in the ground state of OH.

These lines have been obsérved in absorption, emission or
both in the spec%ra of a large number of radié sources close to
the galactic plane.8 The emission from OH molecules is decidedly
non-thermal. Besides extremely narrow spectral profiles, the
salient characteristics of the observations include a very small
angular éize of the emitting region, a lower limit on the surface
brightneés of the order of 103K, étrong polarization both linear
and circular and finally intensity ratios for the four lines in
disagreement with their theoretical values.

These prope?ties suggest that the observed signals have been
amplified by stimulated emission. At least in a qualitative way,
maser amplification could indeed account for most of the anomalous
features that have been observed. A peaked gain profile produces
progressive narrowing of the spectrum as the signal travels through
the medium. The details of the pumping mechanism may cause the
populations of the levels to be different than what they would be
in thermal equilibrium and thus lead to intensity ratios in dis-
agreement with those predicted by theoretical line strengths.
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Further, as was shown by several authors, stimulated emission

may be polarized while thermal emission could not.



A variety of schemes have been inventedlz_eo

to describe the
mechanism by which the OH cloud would be pumped up to excited
levels as required for maser action to take place. The nature of
the fluctuation that triggers maser amplification 1s also a matter
for speculation. One possibility is the amplification of light
spontaneously emitted within the medium. However, emission has
been seen so far only against continuous sources and even if there
were no nearby source of continuum to serve as input to the maser,
the background microwave radiation from the Galaxy would be an
effective stimulus.

For a more comprehensive presentation of the subject the
reader is referred to review articiés.21’22

The problem of coherent light, whether it be a monochromatic
wave or a pulse, propagating through a maser amplifier has been
widely investigated by numerous authors.23_33 On the other hand,
the propagation of incoherent radiation, such as white noise or
black body radiation, does not follow in any direct way from these
investigations because of the nonlinear aspects of the problem.

We propose in this paper to give a simple model which describes
the amplification of an incoherent input signal by a two-level gaseous

medium, It will be assumed that the population of the levels is
inverted at a steady rate but the details of this pumping mechanism
will be ignored. The paper is divided into six sections. In the
next section we summarize the derivation of the equations for the
propagation of a general electromagnetic field in a two-level

medium. In Sec. III the equations are specialized to the case of
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fixed molecgules (homogeneous brOadening) and reduced on the bésis

of several approximations appropriate to our problem such as

the slowly varying amplitude, the narrow passband and the third
order perturbation approximations. _ In Sec, IV, the inco-
herent radiation is described in terms of its spectral properties
and an equation is derived for the propagation of the spectral
density function. After a brief study of this equation, the results
are generalized to the case of a strong signal by summing the per-
turbation expanslion series., Section V introduces the motion of the
molecules (Doppler broadening). General conclusions are drawn in

Sec, VI.
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II. DERIVATION OF THE EQUATIONS

The basis for the following calculations was set by Lamb
in his !'Theory of an Optical Méser'. The gas cloud will be
assumed to be a collection of two-level molecules in thermal
motion and coupled only through their dipole interaction with the
overall field. The latter will be represented by a scalar E(z,t)
linearly polarized in the x-direction and propagating in the z
direction.

E(r,t) = B(z,t) X (1)

We W

Thus the proplem is reduced tp a single dimension and no
attempt is made to describe the actual polarization of the field
arising from the magnetic splitting of the levels. Collision
effects will also be ignored.

Given two time independent basis functions wa’ Wb for the
states a and b, the wave function for the molecule can be written

as
P(t) = a(t)y, + D(t)y, - (2)

In the subspace spanned by wa and wb the effective Hamiltonian

seen by the molecule is

H=H_ - EP (3)

where / \

HO = h \ (4)
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is the Hamiltonian for the unperturbed molecule,

. o PE(t) (5)
PE(t) o) '

is the interaction Hamiltonian in the dipole approximation, and
p = {a|P[b) = (blP|a) ' (6)

is the matrix element of the dipole moment operator P. The
density matrix p(a,zo,to,v,t) of the molecule, labelled by the
initial state a(a=a or b), position Zs time t and velocity v

ofvexcitation is defined as

p = [¥¥yl | (7)
and is known to obey ﬁhe equation of motion

ih 3p/3t = [H,p] . (8)
The expectation value of the molecular d%pole moment is given by

(P = Tr(oP) = p(py, + py,) - (9)

A proper statistical summation over (9) leads to the macroscopic
polarization P(z,t) which enters as a driving term into Maxwell's
equation for the field. Leaving the summation over v aside, for

the time being, it can be seen that
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b t ’
o(v,z,t) = aZ f_m dt fdzO ha(v,zo,to)p(a,zo,to,v;t)é(z-zo—v(t~to)
(10)

where Xu is the number of atoms excited to state a per unit time
and unit volume, represents the population matrix for an ensemble
of molecules of a given velocity v which reach the position z at

time t and thus contribute to the polarization according to

P(z,t) = [dv P(v,z,t) = pfav [Pap(VsZst) + o (Vo2,t)].  (21)

It has been shown elsewhere(BB) that in terms of p(v,z,t), the. couplin:

of the equation of motion (8) to the field equation, can be written as

-3%E/52° + p_0dE/2t + ¢ 0PE/3t? = - 3%P(z,t)/ot? (12a)
(3/3t + va/az)paa(v,z,t) = A, Yg0h, i(p/n)E(z,t) (pab-pba) (12b)

(3/3t + v3/32) 0, (V,2,8) = A v, e,y + 1(p/D)E(2Z,1t) (Pap Ppg) (12¢)

(3/3t + vé/az)pab(v,z,t)

il

“(Yap + 10) 0, “i(p/M)E(2,t) (0,7 0y)  (12d)
*
pba(V: Z:t) = pab s (;1.28)

where Ko is the vacuum permeability, ¢ the velocity of light and

w the resonance frequency

W= " w . | (13)
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The fictitivus conductivity o is introduced phenomenologically

in order to account for any linear losses in the background medium.

The damping constants Ya’ Yy, and Yab are similarly introduced to
represent the decay of the levels a, b and of the molecular
dipole moment in the absence of any radiation field. Further,

a steady and homogeneous rate of excitation ig assumed, so that

Ay (Vaz,t) = A W(v) (14)

where W(v) is the velocity distribution function.

Given initial conditions p(v,z,0) for the medium and the
boundary condition E(O,t) for the field, Egs. (12) in principle
determine E(z,t) for any z. HoweVer, the integration of the
equations 1s not practically feasible and further approximations
must be used. The nature of these approximations depends on the
form of the input signal. In the following section we shall
specialize Egs. (12) for the case of incoherent input.

To exhibit more clearly the neovel features of the problem
we shall first treat the case of fixed molecules leaving aside
the interesting but otherwise familiar complication of molecular
motion. 1In this case the medium is said to be homogeneously

broadened.
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e ITI. SIMPLIFYING APPROXIMATIONS

1. Fixed Molecules (Homogeneous Broadening),

Setting v = 0 and dropping any velocity dependence of the

variables, we may reduce Egs. (1l2) to

-3°E/32° + RoORE/3t + ¢ PPE/at? = -y 3%p/at?

ba,a = Mg T YaPga T 1(p/B) E(py7ep,)
b = My " YpPpp " 1(p/h) E(pyy,™ep,)
éab = —(Yab * iw) pab B i(p/h)E(paa ) pbb)
%
’ba, Pab

(15a)
(15b)
(15¢)

(154)

(15€)

Since an incoherent field is much more easily described in terms

of its spectral properties, it will clearly be helpful to work

in the frequency domain. Introducing the Fourier transforms

I

E(z,v) = (2m) % [*° B(z,t)e” TV ar
-

il

(QW)—l J+m p(z,t)e—th dt

-

o(z,v)
and assuming ¥y << w, Egs, (15) are transformed into
ab

agE(z,v)/az2 = —'(ve/bg - dwp o)E(z,v) -'uong(z,v)

oo

(16a)

(16b)

(172)

P(z,v) = (0%/n) [20/(v? -2y, v) [ N(z,v!)E(z,v-y )dv'  (17b)
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N(z,v) = N B(v) + (n) * [(v, + iv)_'l # (v, + 1) 7]

X IT: ivtP(z,v') E(z,v-v!) dv! (17¢)
where
P(z,v) = p[p,(2,v) + pba(z,v)] , (18)
N(z,v) = paa(Z,V) - Pbb(Z:V) (19)
and
Ny = (Aa/v,) = (Ap/vy) (20)

is the population -inversion that would be established in the

absence of any field.

2. Slowly Varying Amplitude Approximation

Equation (17-a) suggests that E(z,v) has a rapidly varying

dependence exp(-ivz/c). In order to remove this factor we set
E(z,v) = E(z,v) exp(-ivz/c) (21a)
P(z,v) = P(z,v) exp(-ivz/c) (21b)
N(z,v) - N(z,v) exp(-ivz/c) . (21c)

Equations (17b) and (17c) are not affected by these substitutions.
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However, assuming that the new E(z,v) varies slowly over a distance

c/v, Eq. (17a) reduces to a first order equation

1 1 .
3E/3z = - 5 p,ocE - 5 ip veP . (22)

3. Scaling of the Eguations

Equations (17b), (17c) and (21) are reduced to a convenient

form if E, P, N are evaluated in units of EO, Po’ No respectively,

with
E, = (nb/p) (YYab)l/2 , (23a)
Py = 1pNy (1/¥gp) 2 (230)
v = eyt + vy )T (23¢)

and N, is given by (20). 1In these units the resulting equations

can be written as

3E(z,v)/3z = - xB(z,v) + GP(z,v) (2ha)

e

. 2 . =1 pdee
P(z,v) = 2iyofw” - v° + 2iy_, v] f_mN(z,v')E(z,v-v')dv' (24b)

I

N(z,v) s(v) - F(v) IT: (v!'/w) P(z,v')E(z,v-v')dy! (2ke)

where the linear loss » and the coupling constant G are given by

R % L _oc (25)

and

o=

2 _
P No/(eohyabc) . - (26)
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The function F(v) is defined as
- o1 B!
(v) = v[(vy + iv) =+ (vy +1v) 71 . (27)

The new variables E, P, N which enter Egs. (24) have the dimension
of a frequency and represent the Fourier transforms of dimensionless

quantities, while x and G have the dimensions of a reciprocal length.

4. Narrow Passband Approximation

Since the natural bandwidth of the amplifier, of the order of
Yap? is much smaller than the résonance frequency o, E(z,v) and
P(z,v) will have appreciable values .only around a limited range of
frequencies around v = % @, Similarly N(z,v) will be peaked around
v = 9. It is therefore expedient to modify the integrals appearing
in Eqs. (24), using these properties of the integrands.

The factor in front of the integral in (24b) can be reduced

to a complex Lorentzian if we set
v ; ® + 0 (28)
where Q is small compared to ®w. We then find
21y o(af-v® + 2ivabv)'l = Yo/ (Ygp7i0) = D(R) . (29)

The main contribution to the integral in Eq. (2U4b) comes from small

values of v', so that in terms of the translated functions
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P{z, w + Q) ; P(z,0) (30a)

E(z,w + 0 -'o') - E(z,0 - Q') (30b)

Eq. (24b) may be approximated by

P(z,n) = D(Q) [ N(z,0") E(z,o-n') ant , (31)

where the dummy variable v'!' has been replaced by Q'.

Appreciable contributions to the integral in (2Lec) come from two
regions: the first is v' ~ ®, the second v' ~ -w. Changing the
variable of integration to Q' defined by

v = o + O A (32)

in the first region, and by

vl = -0 + Q-0 (33)

in the second region, Eq. (2l4c) may be expressed in terms of

the translated functions of (30), as

* .
N(z,Q) = 8(0) - P(Q)[[P(z,Q')E (z,0'-Q) + E(z,Q')P*(z,Q'eQ)JdQ' (34
where use was made of the symmetry property
E(z, -v) = E*(z,v) and P(z, -v) = P*(z,v) (35)

and of the approximations

0,0 < o, (36)
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The complete set of coupled equatiéns is then
3E/32z = -#E + GP o (372)
P = 8(0)[N(z,0')E(z,0-0')dq! | (370)
N = 5(0)-F(0) [[P(2,01)E(2,0'-0) + B(z,0')P (z,0'-0)]1dar  (37¢)

5. Third Order Iteration

An iterative solution of the form

N(z,0) = n(0) + N(e) + N(L‘) e (38a)

P(z,0)

p(1) , p(3) 4 p(5) 4 ... (38b)

can be written down for the coupled integral equations (37b) and
(37c). Under certain conditions, to be specified later, the
truncated form of (38) represents an adequate approximation to

the true solution. Using

0 = s(0) (39)
one obtains by repeated substitutions

p(1) _ p(a)E(n) , (40)

n(2) = -p(n)fan'B(QN)ET(Q1-)[D(QT) + D (Rr-R)] (1)

and

p(3)_ -p(a)fantB(a-01)F(0") faE(a")E*(a"-a! ) [D(0") + D (n"-0')] (42)
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Hence the third order field equation

3E 3z = [qD(Q)-u]E-qD(Q)de'E(Q-Q')F(Q')fdo"E(Q")E*(Q"-Q')[D(n")-'rD*(Q"-:*
| | o (83)

6. Numerical Integration

We have attempted to integrate Eq. (43) numerically with a
digital computer. In order to perform such en integration one must
choose a set of discrete frequencies Qn for which one wishes to
determine the z dependence of E(Z,Qn). The distribution of the
Qn's along the Q axis must be dense enough inside the passband
sd that one may evaluate accurately_the integrals on the right
hand side of (43). However, the number of operations involved in
evaluating these integrals increases roughly as the square of the
number N of frequencies used and is of the order of 4000 multiplicatiens
and 7000 additions for N = 20. This rapidly produces an accumulation
of round-off errors such that the accurete integration of the
equation becomes very costly. There is also a more fundamental
objection to the direct numerical integration of Eq. (43). As-
suming that a discrete set of rebresentative frequencies Qn has
been chosen, one would then like to assign random pheses.to the
boundary values E(O,Qn) to express the erratic behavior‘of the 0
dependence of the phase of E(0,Q). It is then illegitimate to replace
integrals over such a rapidly varying function by a sum over a few
discrete fregquencies. Somehow, use must be made of the random-

ness of the phases in evaluating these integrals.
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Howevér, Eq. (43) is not entirely . useless. If one
claims that the incoming signal contains only a few
discrete frequencies, then the right hand side reduces
to a manageable sum, and one could integrate the equation at
reasonable cost,  Care must be taken to choose the discrete
frequencies in such a way that by forming combination tones one
does not obtain new freguencies falling inside the passband.

This is most simply achieved by covering the passband with equally
spaced frequencies.

We have carried out this calculation with up to 9 frequencies,
répeating each case several times with different choices of the
initial random phéses. The result was invariably a disappearance
of the sidebands and a building up of the central frequency to
the value predicted by the single frequency theory(33) (see Fig. 1).
Examination of Eg. (43) shows that this, as well as oscillation
at any other single frequency, is a stable solution. An obvious
reason for the building up of the central frequency at the
expense of the sidebands is the favorable gain conditions. If
 the sidebands were more numerous and closely spaced, it is
conceivable that the random choice of the initiél phases mighf
favor some sideband not far from the center, in spite of its
relatively lower gain. However, with only 9 fregquencies covering
the entire passband, even the first sidebands have a gain so much
lower that the combinations of initial phases required to produce
- a build-up of anything but the center frequency is extremely
unlikely and never occurred in the limited number of trials we

made,
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IV. INCOHERENT RADIATION

1. Description of the Radiation Field

We shall now specify the ﬁature of the radiation field E(0,t)
hitting the entry plane z = 0. A qualitative picture of incoherent
light is a superposition of many frequencies with uncorrelated
phases and possibly fluctuating intensities. - If the complex
amplitude E(0,Q) of the Fourier transform of E(O,t) is written in

polar form as
E(0,0) = A(n)explie(0)] ., ()

A2(Q) gives the intensity and g(n) the phase of the particular
frequency Q. We would therefore assume that AE(Q) is fluctuating
around an average value I(Q) which itself may vary smoothly with 0
and that g(q) 15 an erratic function of  whose values are dis-
tributed with a uniform probability density between O and 27.

(By an erratic function we mean that any sequence of values of the
function passes the randomness tests.)

The incoherent character of the field implies that the phases
of two distinet frequencies, no matter how close, are totally uncor-
related. 1In practice of course, there will be a very small frequency
Ve called the coherence range such.that frequencies within the same
coherence range do have correlated phases, however, Ve will be
assumed @o be much smaller than all other frequencies relevant

to the problem.
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The Fourier transform of a signal with a discrete set of

frequencies can be written as
E(n) = © E_ 8(0-nsn) (45)
n

where 60 is the spacing of the allowed frequencies. (Note that
the complex amplitudes En are dimensionless,) The total energy

is proportional to
. (46)

The assumption of no correlation can be expressed by the following

condition on the En's

Hngomg o (8007 B BEL. =gy, oT(0) ()
eh v v

where AQ is a frequency interval around (, sSmall compared to the

bandwidth of the medium, but large compared to &0. The notation

n e¢ A0 means that nén falls inside the interval AQ (see Fig. 2).

The limit in (47) must be understood in the probabilistié sense,

In more precise terms, given any ¢ > 0 and 0 < PO < 1, we can choose

N so large that the probability of having

(AQ)"ln L EE ., <ec (n' #0)  (48)
€

'is larger than Poe
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When n' = @3 Eg. (47) becomes thée defining relation for the function
I(n) which can be recognized as the spectral density since we have,

from (46) and (47)

“+o
W= § I(o)ao = [ I(n)an . (L49)
Q -

2. .Derivation of the Reduced Equation

~

For a discrete spectrum like that of (45), Eq. (43) becomes

: - * *
BEn/BZ = (QDn‘%)En‘QDn i,En-n’Fn' g" EnnEnn_n,(Dnu + Dnn_n,) (50)

where

Dn = D(nsQ) and F_, = F(n'sQ) . (51)

Subdividing the Q axis into small intervals AQ over which D(Q)

and F(Q) remain practically constant, we have _

_ _ _ N : " LN
3E /32 = (GD,-»)E -CD_ 5, En_n,Fn,Ag"[D(O ) + D (Q"-0'"]

X £ EuE
a"eAq™ n" n"-nt (52)

Now, if N = AQ/8Q is a very large number, we can use (47) to

transform (52) into

’ aEn/a_Z =-(an_%)En'u>QDnEn A}(:),'" L(Q") I(Q")AQ” (53)

where we used
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and

~ L(A) = 3(D(0) +D7(0)] = ¥2 /(5 + 0®) .. (55)

. - % S
Applying the operator (AQ) 1 pX En to both sides of Eq. (53),
: neAf
we find ’

3I/5z = 2[GL(Q)-x]I(Q) - 8GL(0)I()[L(n')I(a’)dn! (56)

where the discrete sum of (53) has now been replaced by an integral.

To summarize the situation, we have transformed Eg. (43) involving
amplitudes and phases, into Eg. (56) involving the spectral density
I(z,0) by assuming that the radiation hitting the entry plane z = O is
incoherent as expressed by the condition (47).

Since we don't yet know whether the radiation field remains
-incoherent as it travels through the active medium, we can only
claim that Eq. (56) holds at z = 0. We will now show that

the field at some small depth Az is also incoherent. Defining
.M(z) = 1-4fnL(Q')I(z,0')an! (57)
we can write (53) as
[0E,/32],_o = [GDM(0)-%]E (0) (58)
and we use 1t to calculate

= (a0) 7 =

(3/3z)[(60) L £ E [
neAQ

[N E b4 BE zZ 3z

(59)
+ En(z)aEz.;.n'(z)/az]Z:O |

The first term on the right hand side becomes

(a0) ™ £ [6D_(0) k1B, (0)EL, 1 (0) = [GD(R)M(0)-x]s, T(0,0),  (60)

neAn
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and the second term is given by a similar expression, so that

ew

' ga/az)[<m>’1n€§QEn<z>E§+n.(znz-:o = 2[GL(0)U(0) K1y, (T(0:0). (1)

Hence

(AQ)"lnein B, (42)Ep 1 (82) = 6., (T(0,0)+282[GL(2)M(0)-#]1T(0,0)]

=5, I(az,0) . | (62)

nt',o

We have thus proved that the field obeys the condition (47) for
incoherence at some small depth Az and we may, by induction,
extend the result to any depth z. Therefore Eq. (56) holds at

any point of the ﬁedium and is written as
3I(z,0)/3z = [L(Q)-»x]1I(z,0)-4L(Q)I(Q)[L(0*)I(at)dn’ (63)

after expressing 'z and % in units of (2@)-1 and G, respectively

20z -z , w/G-on . - (64)

We have gone through considerable detail to show hoW under
the assumption of incoherent radiation, Eq. (43) becomes. Eq. (53)
which in turn gives Eg. (63). It can be noticed, however, that
the same result is obtained by formally replacing the inner

integral in (43) by
fan"E(a") B (0"-01)[D(0")+D*(0"-01)] = 6(n')[a0"I(a")[D(A")+D (a")] (=

Tn future derivations this shortcut will be used rather than going

through the same exact derivation over and over again,
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The physical meaning of Eg. (63) is very simple. The
increment in the spectral density is the difference of two terms.
The first term is a net lineai'gain or loss with a Lorentzian
profile |

G(R) = L(Q)-x (66)-

shown in Fig. 3, and from which it is clear that only those
frequencies around Q = 0 (v = ®) such that G(Q) > 0 will be
amplified. 1In the absence of the nonlinear term, the linear
gain.would produce an exponential growth of all frequency com-
ponents within phe passband and an increasing sharpness of the
spéctral profile. - It is seen from the second term that the

saturation factor
S(z) = 4fL(or)I(z,0')a0r (67)

is a weighted sum of contributions from all frequencies. Expressed
in different terms this means that the various frequéncy components
of the field act on the medium indépendently and then in turn each
frequency component sees the overall saturatiop. ,This simple type
- of interaction is of course a direct consequence of dealing with
an incoherent field. There is here an analogy with interference
experiments in which two beams of light are superimposed. When

the beams are coherent, the electric field amplitudes add up,

while one only gets an addition of the intensities if the beams

are incoherent.
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3. Investigation of the Solutions

We shall now proceed to investigate the solutions of Eq.
(63). We may first notice that this equation contains the
possibility of oscillation at any single frequency within the

‘gain bandwidth. Setting

I(z,0) = A(z)8(0-0,) ' (68)
and substituting into (63) we get
aA/az = [L(0,)-#]A(z) - H[L(0,)A(2)]° (69)

which is similar to an equation obtained in our previous work.33

Equation (69) gives a limiting value for A(z)
2
A(=) = [L(n,)-x1/[2L( )12, (70)
This approach may be generalized by writing, instead of (68)
a sum of many &-functions

I(z,0) =% Aj(z)é(Q-Qj) . (71)
J

One would then obtain coupled equations for the various amplitudes Ai.
dA;/dz = [L(Q;)-»14;(2) - 4L(0)A;(2) 55“ L(nj)Aj(z) (72)

which imply that if Ak(z) is zero initially, it remains zero. Thus
the generation of combination tones is now excluded from the theory.

One should not be surprised by this result since the derivation
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of Eqg. (63) was based on the assumption that between any two
discrete frequencies such as Qk and Qk+l there actually is a
very large number of intermediate frequencies with uncorrelated
phases. The equation should therefore only be applied to a
quasi-continuum of frequencies,

To investigate the possibility of a stationary solution

by which we mean
I(z,0) = I(0) (73)
we set the left-hénd side of (63) equal to zero and obtain
fL(Q*)I(Q')dQ' = [IL(Q)-n]/4L(Q) (74)

after cancellation by I(Q). Since this relation cannot be
satisfied for all values of Q, it appears that stationary solutions
are not in genergl possible. Indeed the numerical integration
of (63) starting with

I(0,0) = small constant ; (75)

shows (see Fig. L) that the solution becomes increasingly peaked
at Q = O thus asymptotically approaching the solution (68) for
Q= 0, with |

A(=) = (1-x)/4 (76).

in agreement with (70). Loosely speaking we will say that §(Q)

is a stationary solution for Eq. (63), meaning that there is an
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actual solution I(z,Q) such that

1imz_m1(z,9)‘ = §(0) . | (77)

It can be noticed that a sum of more than one §-functions cannot
be a stationary solution since setting the left hand sides equal
to zero in Egs. (72) results in a set of mutually inconsistent
equations for the amplitudes Ai’

In the exceptional case % = 0, the solution does settle down
to a stationary form just as soon as (74) is satisfied. However,
it will be seen later that this is only an unphysical peculiarity

of the third order equation.
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L, Strong-8ignal Theory

The basic Egs. (37) were decoupled using an itefative ap-
proach and truncating at third order on the assumption of a weak
signal. It is in principle possible to write down the iterative
solution to any order but the terms of higher order become in-
creasingly complicated and the summation of'the series does not
seem to be feasible, However, we will be able to carry out this
summation in our problem by using the simplifications.brought
about by the assumption of incohérence.

Starting again with the expansion (38) we suécessivély

obtain from (37)

n(°) - 5(Q) (78)
(1) = p(0)E(z,0) (79)
n(2) - -F(Q')er"E(z,Q')E*(z,Q'~Q)[D(Q') +DY(ar-0)] . | (80)

Using the recipe of (65) we know that for an incoherent E, the

last expression reduces to

n(2)o —ns(q) fanrI(z,0M)L(01) = -8(2)s(0) . (81)

We may then proceed to find

p(3) = -g(2)p(0)E(z,0) . (82)
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Tn order to derive the general formula for p(2m+1) by induction,

we &ssume

p(2m+l) _ (-5)™p(0)E(Q) |, - (83)

where the z dependence of S and E is understood.

Substitution into (37c) gives

n(2M42)_ _(5)™ p(q)[anrE(Qt)E (Q1-0)[D(') + D (R'-0)]1  (8k)
= (-s)™ gy

hence

P(2m+-3) _ (-S)m+lD(Q)E(Q)
which proves formula (83). We may now sum the series expansion

p- y pl2mtl) _ D(Q)E(Q) T (-S)™ = D(Q)E(Q)(1+8) > (86)
m==0 m=0 :

and write Eg. (37a) as

3E/3z = -xE + D(n)E(q)(1+8)7* (87)

which using (67) implies

al(z;Q)/éz-= {-n + L(Q)/(1H4fL(0")I(z,0' )d0' ) JI(z,0)  (88)

after using the scaling indicated in (64).
Equation (88) is the exact form of Eq. (63) and has much the same

behaviour as the latter, namely its solutions approach &(q)
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as z - », According to (88) the.limiting value of the expansion

parameter is

S(®) = 4[L(Q')I(»,01)d0r =« T =1, (89)

The condition for the asymptotic validity of the third order

expansion (63) appears then to be

ol . (90)

For a proper stationary solution I(N) to exist in this case, we

must have
[L(00)I(0r)dn = [B(0)-n1/ix (91)

which is impossibie even for #» = 0. Therefore the stationary
éoiution obtaineq in the preceeding section for the case n = 0
is not only unphysical on the grounds that one can never have
exactly n = O, but it 'is also due to an accidental mathematical
feature of Eq. (63) which does not belong to the exact Eq. (88).

As an illustration of (88) we have numerically integrated
-it starting again with a noise level white spectrum, and for |
several values of the parameter n (see Fig, 5). For each case
we have also plbtted the total energy and the spectral width as
a function of z. See Figs. 6 and 7.

The most general steady-state sclution of Eqg. (88) is of the form
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I(n) = A&(Q‘Qo) , 'f (92)

where Qo is an arbitrary frequency within the passband. Sub-

stituting (92) into Eq. (88), one finds that A and 0, must be

related by
w = L(0y)/11 + 4aL(0, )] - (93)

It will now be shown that the solution (92) is steble only if Q, = O.

Perturbing the solution (92) by a small amount ¢, we substitute

I(z,0) = A8(-0) + e(2,0) (9k)
into Eq. (88) and obtain

3e(z,0)/0z = {As(0-0,) + e}{-x + L(Q) [1 + hAL(Q))

+ 4fe(z,01)L(a")dar 171y . (95)

The correction ¢ occurs in both curly brackets. First order terms
are therefore obtained“by neglecting ¢ in either one of the two
brackets. If the ¢ of the first bracket is neglected, the re-
maining expression is proportional to 6(0-00) and therefore gives
the car rection to the §-function. By neglecting ¢ in the second
bracket we can find out about the stability at other frequencies.,

Equation (95) then reduces to
3e/dz = el-n + L(Q) [1 + 4an(e )11} . (96)
and using (93) to

de/dz = e[L(R) - L(0)1[1 + 4an(0.)] ™" (97)
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For the solution (92) to be stable we must therefore have
L(Q) < L(QO) for all Q (98)

which is only possible if QO = 0.
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V. DOPPLER BROADENING

A. Derivation of the Eguation
NAVAANNAA N e A A A e A AP S APV eren NP P
If a group of molecules is moving with velocity v, their
resonance frequency is effectively shifted by an amount Kv

Wopp = ® + Kv - (99)

where the wave number.is defined as
K=w/k . (100)

Td lowest order, the partial poiarization P(v,z,t) and population
inversion N(v,z,t) can be obtained from the corresponding expressions
(24b) and (2l4c) for the case v = O, by simply substituting w_er

for w. The use of this recipe was Jjustified in the previous work.33
Carrying out.the'narrow passband approximation along the lines of

Sec, III-3, we find

BE(Z,Q)/BZ = -uE + GP(z,0Q) (101a)
P(v,z,0) = D(0-Kv)[N(v,z,0')E(z,Q-Q')dq! (101b)
N(v,2,0) = W(v)s(n) - F(0)[anr[P(v,2,0')E (2,01 -0)

+ E(z,0')P (v,2,0'-0)] (101c)
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‘where %, G, D(Q), F(Q) were defined by (25), (26), (29), (27)

respectively and W(v) is the velocity distribution fuﬁcﬁion.
We may build an iterative solution of (101lb) and (10lc)

just as in the case of fixed molecules (v = O). The summation

of the polarizations of various orders gives in this case
P(v,z,0) = W(v)D(0-Kv)E(z,Q)[1 + S(v,z)] * (102)
where

S(v,z) = 4fdar'L(n' - Kv)I(z,Q') . (103)

The total polarization P(z,0) is obtained by integrating the

expression (102) over v. Using the notation
<'"")v = [W(v) (-.-)av (104)
end the scsling of (64), Eq. (10la) yields

3I(2,0)/5z = I(z,0) {{L(Q-Kv)[1 + S(z,v)] 1) - x}.  (105)

In connection with this equation we shall define the small signal

gain profile

G(Q) = [avW(v)L(Q-Kv) , (106)

the effective gain profile

Q(2z,90) = [dvW(v)L(Q-Kv)[1 + MIL(Q'-KV)I(Z,Q’)dQ']_l (107)
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and their mormalized form

G'(Q) = G(Q)/G(0) (108)

Q'(z,0) = Q(z,0)/G(0) ; | (109)
together with the normalized linear loss

x! = #/G(0) . f (110)
Using the appropriately scaled distance

z' = G(0)z , | | | (111)
we.can write Eq. (105) in a compact form as

3I(z,0)/3z' = [Q'(z,0)-%']I(z,0) (112)

B.  ZwoVelocity Case

The simplest kind of Doppler broadening occurs when the
medium consists of two groups of molecules moving with different
velocities. One may then assume without loss of generality that
the two velocities are of equal magnitude and opposite sign, say

* u, If there are equal numbers of molecules of each velocity,

the gain profile is simply

61 () = S[L(Q-Ka) + L(0 + Ku)]/L(Ku) (113)

Figures 8 and 9 illustrate this profile for Ku = 0.2 Yab and
Ku = Yab? respectively. The transition between the two shapes

occurs at KpR = 0.58 Yab© It would therefore be desirable to
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investigate the two-velocity case for Ku > Kup and Ku < Kug.

1. Numerical Integration

The calculations show that for Ku = 0.2 Yab’ a flat input
spectrum evolves into a sharp peak around O = 0, not unlike
the case of homogeneous broadening, while for Ku = Yab? the
same input evolves into two peaks located at the maxima of the
corresponding gain curve. These results are illustrated in
Figs. 10 and 11.

For the case Ku = 0.2 Yap W€ have integrated the equation

starting with an input consisfing of two sharp'peaks around
0 ==%20,2 Yab? and have found a gradual merging of the two peaks
into a single one around 0 = 0, as seen in Fig. 12. This result
indicates that the eventual outcome depends on the shape of the
gain curve rather than on the input. For additional confirmation,
we considered thé case Ku = Yab? but with unequal weights W(u) = 0.6
and W(-u) = 0.4, The gain profile for this case is shown in Fig. 13.
Numerical integration in this case exhibits the formation of a
large peak around Q = Yab and of a smaller one around Q = Yab

(see Fig. 14).
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2. Steady-State Solutions

We can gain insight into the algebra underlying these
numerical results by studying the steady state solutions of
Eq. (112). By inspection one can see that these must consist

of é&-functions. The simplest such solution is therefore
I(0) =4 s(q) . _ (114)

For the two-velocity case, with equal weight, we find that A

must satisfy
A= (7t - l)/hL(Ku’ . (115)
Another possible solution is
() = 2l 6la - o)) + s(a+ a.)] (116)
in which case we find
A = [G'(QO)/K' - l]/MG‘(QO)L(Ku) | (117)

where G' is the gain function of (113). More generally it is

possible to find solutions of the form

I(n) =Ay8(n - o) +A8(0 - o) (118)

but solutions containing more than two &-functions do not exist,

This can be seen by substituting
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N |
I(q) = 121 A, 8(q - Qi) (119)

into Eq. (112) and equating to zero the coefficlents of the

8- functions. We find a set of N simultaneous equations

a,L(o; - Ku) + c_L{a, +Ku) =" | 3 -1,,,.,8 (120)
where

. N_ o 1

G, = {2I(Ku)[1 + MizaAiL(Qi Tra) |} . (121)
Equations (120) are ihcompatible if there are more than two
distinct frequencies Qi. This result can easily be generalized
to the case of n discrete velocities, for which one can find
steady-state solutions consisting of up to n s-functions.

Stability. We shall now investigate the stabllity of these

steady-state solutions. Choosing to work, for simplicity, with

the solution (116), we set
1(z,0) = I(Q) + ¢(z,0) (122)
and substitute into Eq. (112) to find

-1
se(z,0)/3z = e(z,o){— K' o+ G'(Q)[l + AAL(Ku)G'(QO)] } (123)
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.after dropping a term proportional to &(Q - Qo) + 8(0 +~QO)

for the reasons indicated in Sec., IV. 4. Using (117), Eq. (123)

can be written as
j—l
se/3z = ¢ [G'(0) - ¢'(q,) ][ + 4AL(ku)G' () | . (124)

From Eq. (124) it can be inferred that at points of the ( axis
where G'(0) > G'(QO) , e(z,0) will grow. Thus for (116) to be
a completely stable solution, 0% must correspond to an absolute
maximum of the gain G'(Q).
v For the case of the unstmetrical gain profile of Fig. 13
it can be shown ﬁy a similar argﬁment that there exists a stable
solution of the form (118). The algebra is more involved and the
pron left to Appendix A.
C. Continuum of Velocities

DA A A AAAAANAA A AAAAAA A A

In practice the molecules of the cloud are in thermal motion

and have a continuous distribution of velocities which can be

assumed to be Maxwellian

Wiv) = v—l/g vt exp(- vé/ug) . (125)
The normalized weak signal gain profile in this case is

G (q) = ziBb + iyab)/Ku]/zi(iyab/Ku) (126)

where Zi denotes the imaginary part of the plasma dispersion

function
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z2(¢) = w2 te

exp(-t%)(t - ¢) tat (127)
for
lm¢g>0 . ' _ (128)

Figure 15 illustrates this function for yab/Ku =1

1. Doppler Limit (Ku >> v, ) .

In this limit Eq. (126) reduces to
61 (n) = exp[- /()] . (129)

A similar limiting form may be obtained for the differential
equation (112) itself. Assuming that the spectral deﬁgity
I(Z,Q) varies slowly in a frequency range of the order of Yab’

the saturation integral S(v,z) defined in (103) can be approximated

by
S(v,z) = 4fan'L(o' - kv)I(z,0') ~ 47y, I(z,Kv) (130)
since in the limit y,,/Ku = O, the Lorentzian L acts like a

& function. Using the same type of approximation to evaluate

the velocity average, we find as the limiting form of Eq. (112)

AL(2,0)/32 = {- u' + exp[:—QQ/(Ku)z:l[l + uwyabl(z,g)]_l}l(z,o) (131)
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‘This equation can be integrated in closed form and the implicit

solution is given by

a1 _ g2 a1 2
by e r(0,0)[1 - T(0,0)/z, " expl-2)

(132)
X eXP{[GXP(-ge)-K'] Z}

where
E = Q/Ku’ (133)
and

IE(Q) = (nyab) [n' exp(—ge);l] . (134)

It can be seen from (132) that the asymptotic limit of this

solution, as z - «, is

I(=,0) = { )i lel <o, (135)
0 ir |of 2 o

where Qc defines the half-width of the passband and is given,

in the "Doppler limit, by
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: 1/2
0, = Ku[log(l/u')] . - (136)

The physical interpretation of the Simplified Eq. (131) becones
clear if one compares it to the exact Eq. (112), It is seen “rom
the expression (130) for the saturation term S({z,v), that oscilla-
tion at any frequency Q' saturates the medium for frequencies
lying in a small range of the order of Yab around that frequency
Q'. In the Doppler 1limit this range is very small compared to
the overall width of the spectrum which is of the order of Xu,
and the interaction of the vafious frequency components 1s neg-
lected, thus ledding to the simplified Eg. (131) according to
which the frequency components propagate independently of each
other. However, it will be seen that this aporoximation changes
the nature of the solutions of the equation. The frequency inter-
action, althouéh restricted, should not be neglected,

2. Steady-State Solutions

Besides the usual &-function steady-state solutions, which
will be discussed later, Eq. (112) admits a new kind of steady-
state solution., Indaed, the bracket on the right-hand side of
the equation can be made to vanish identically by a suitable
choice of I(Q) which would make the velocity average independent

of 0. More precisely we must have

! = W-l/e[a'(o)}‘le(Q - Kv)exo( - vo/u?)[1 + BfL(0r - Kv)I(a')anr S/

(137)
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This equdlity will hold for every Q if
1+ 4fL(a' - Kv)I(0)ao = 7*/2 n[G(0)n! [ exn(- v2/u?)  (138)

where

The integral equation (138) can be inverted by taking the Fourier
transform of both sides of the equation, Using the Fourier trans-

form of the Lorentzian

+oo |
I m@e an = mypexm(- vy loD) (140)

-0

and an alternative integral representation of the plasma dispersion

function
2(¢) = 1] aw exp(- 72 + 1 cu) (141)
O

one obtains

1o
() = (4mve,) [n' 7 7zy(8 + 1n)/2;(in) - 1] (142)

In the limit n - O, the plasma function becomes a Gaussian and
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‘one recovérs the expression (134).

The solution (142), for the spectral density, like (134),
becomes negative outside the passband (|Q] = Qc). This is
physicaliy unacceptable, However, a trunceted form of (142)
similar to (135) cannot be used in this case because it would
not be a solution of the exact Eq. (112), but only an approximate
solution provided Ku >> Yab* As a2 result of this analysis, we
can say that in the Doppler 1limit, the solution of the exact
Eq. (112) will behave very much as predicted by its limiting
form (131). Namely, it will closely approach the function (135),
»but once this stage is attained, the approximate equation predicts
that the solutlon will stabilize, whereas according to the exact

equation it will not,

In the general case, Eq. (112) admits a sum of any number of
b-functions as,steady—state solutions. For the simplest case of
a single b§-function, we find an implicit value for the amplitude

A, by substituting the expression (114) into Eq. (112).
~1/2 -1 2,2 -1
w! =T [G(O)] fa(v/u)exp(- v©/u )L(Kv)[l + 4AL(Kv) | (123)
-
or in a more convenient form for graphical solution
. 1/2 : 1/27 .
w' (1 + 44) - zi[m(l + 4A)TE Yz, (in) (144)

Solving (144) yields a positive value for A 1f O < 4! < 1

(as seen in Fig. 16), which in the Doppler limit becomes



A = T (%'_2 - 1) . (145)
This &-function steady-state, which in the case of homogeneous

broadening was shown to be stable under all circumstances, will

now prove to be stable only under certain conditions. Substituting
I(z,0) = As(q) + e(z,0) ’ (146)

Into Eq. (112) and dropping as beforé a term provortional to

5(0), we find

de/dz = e{—n' +Av"l/g[G(O)]—1fd(v/u)exp(- ve/uQ)L(Q - Kv)

| (147)
-1
[1 + 4AL(kv) | }
Using for ' 1ts value (143), we can write this result as
3e/3z = e{f(o) - £(0)} (148)

where £(Q) is the second term in the curly bracket in (147).

It is seen from (148) that for frequencies ( such that

£(0) > £(0), e(z,0) will grow, hence the solution will be stable
only if £(Q) has an absolute maximum at O = O, Depending on the
values of the parameters Ku and A, £(q) is either a bell-shaped
function with an absolute maximum at 0 = O or a double-peaked

function with a relative minimum at Q = 0. The first case
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corresponds to a negative valué of the second derivative at
0 = 0 and the second case to a positive value. For the solution

to be stable we must therefore have

d°r(0)/8a° < 0 (149)
or
fa(kv)exo(- v2/u)g(a, Kv) < O (150)
with
g(h,Kv) = [1 +A4AL(KV)]—1d2L(KV)/dKV2 . (151)

Setting the right-hand side of (150) equal to zero defines a
curve in the (A,Ku) plane which separates the region of stability
from the region of instability. The (x',Ku) plane is similarly
devided into two regions since A is a function of x' and Ku
according to (144). The stability condition (150) can be
discussed qualitatively in the following way. The function
g(A,Kv) is plotted in Fig. 17 for a few values of A. In the
extreme Dopvler limit (Ku - «) the integral of (150) is

proportional to

[a(kv)a(8,Kv) = (1/2v, A%)[1 + & - (1 +38)(1 + 28) 2] 20 (152)
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‘Thereforé in this 1limit the stability condition (150) is never
satisfied excepnt for A = O which corresvonds to x! = 1 (see
Fig. 16). It is seen from Fig. 17 and from the condition (150)

that for fixed A, the solution will be stable if Ku is smaller

than a certain value, devending on A and therefore on !
Ku < Kust(n’) (153)

Inversely, for fixed Ku, the stablility condition will be satisfied

if A is smaller (consequently »! larger) than a certain value
! oz "'st(Kuj . . (154)
The limiting Doints.are given by
n'gg(®) =1 - (155)
and
Kust(O) = 1.528yab (156)

where the last value is given by the root of

fa(kv)expo(- v2/u2)[L(Kv)IldeL(Kv)/de2 =0 (157)
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which corresponds to (150) with A = o,
It follows from this discussion that in the (Ku,x') plane

the stability curve has the shape given in Fig. 18

3. Numerical integration

We have integrated Eq. (112) with a digital computer for
several choices of the Doppler width Ku and-linear loss y!'.
The cases Kﬁ = Yap? #' = 0.3 corresponding fo a stable §-function
solution and Ku = 5Yab’ #' = 0.5 corresponding to an unstable
s-function solution (See Fig. 18) are representative of the two
different types of behaviour we found. The first case is illus-
trated in Fig. 19 which indicateévthat the solution is approach-
ing a §~function. Here, the velocity integral involved in
Eq. (112) was performed with the use of the Hermite-Gauss integra-

tion formula

e 2,2 n
[ exp(- v /u)¥(v)a(v/u) ~ = W, ¥(ux,)
- 1=1

‘where the x,'s are zeros of the nth Hermite polynomiathn(x)

and the W, 's are appropriate weight factors (See ref. 33 Sec, VI. C).
For Ku >> Yab this formula cannot be usefully applied and the
integration of the equation becomes more time consuming, because

the frequency range involved in the integration is of the order

of Ku and the integrands are rapidly varying in a range of fthe

order of v,y which forces one to use a Qery fine subdivision of

the Q-axis. For this reason, in the physically interesting csse
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in which-Ku is very much larger than Yap the integration of

Eg. (112) becomes prohibitively expensive. We have seen,

however, that in this case (132) represents a good approximation
to the exact solution, at least over an appréciable distanée,

but not for z - » , In the case of moderately large Doppler
breoadening (Ku = 5Yab) which is shown in Fig. 20, the solution
first develops a smooth peak, then becomes irregular and does

not evolve into a simple form but shows a more and more granulated
structure. This type of behaviour becomes more pronounced if

Ku is increased.
VI. CONCLUSIONS,

We have seen in Sec, IV that the propagation equations for
the electromagnetic field in a two-level amplifier can be reduced
| to a simple integro-differential equation (112) for the spectral
density I(z,0) in the special case of incoherent radiation.

The physical contentrof this equation 1s that oscillation at any

given frequency saturates a range of the order of Yap around itself

When the passband of thé medium is of the order of Yab‘as.
in most of the cases we considered, the whole spectral region cf
interest comes under the strong saturating influence of oscillation
at the central frequency, thus giving an ever-sharpening central
peak in the spectral profile. On the other hand, if Ku >> Yap
the region of positive gain is of the order of Ku, provided that
n' is not too close to unity, and the complete spectrum cannot

fall under the domination of any single frequency thus leading to



- U6 -

-a "chaoti¢" situation. This type of behaviour prevails in the
instability region shown in Fig. 18. Notice that no matter how
large Ku is, #' can be chosen so close to unity that the pass-

band is effectively reduced to a size such that stability can be
favored, It appears that within the framework of our model for
maser amplification, the spectral structure of the observed signal
is critically dependent on the 'gain thickness! of the amplifying
medium, on the ratio of the Doppler width Ku to the natural band-
with Yap and finally on the normalized linear loss y' which expresses
the amount by which threshold is exceeded. Consequently the theory
can only yield estimated relationships between these parameters.
For example, a spectral width much narrower than the Doppler width
Ku requires a considerable thickness but also operation near thres-
hold (' ~ 1), or a natural bandwidth Yab comparable to Ku. On the
other hand if there is reason to believe that the medium is ap-
preciably above threshold and that Yap << Ku, then the width of

the spectrum glves an estimated lower 1limit to the kinetic tem-
perature of the medium. However, before drawing any theoretical
conclusions of this nature one must be assured, possibly through
the use of long base line interferometry, that the observed
spectrum is that of a single source rather than a complex super-

position of several sources.
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o APPENDIX A
In this appendix we prove that in the case of two-velocity
Doppler broadening with an unsymmetrical gain profile

gr(q) = WlL(Q - Kul) + WEL(Q - Kug) (A1)

there exists a stable steady-state solution of Eq. (112) of

the form
I(Q) = Ala(g - Ql) + A26(Q - 02) . (A2)

Substituting (A2) into Eq. (112) we find that the four unknown
quantities Al’ Ag, 04 and 02 must be related by the two following

relations

—1
n' = ( L(o; - Kv) [1 + 4A,L(0; - Kv) + 4A2L(Q2 - Kv)j )

-1
w!' = (L (Q2 - Kv) [1 + LA L(o - Kv) + 4A2L(Qg —.Kv)] y .

(43b)

Adding a small perturbation to the solution (A2), we substitute
I(z,0) = I(a) + (z,0) (ALk)

- into Eq. (112) and find that the stability at frequencies other

than Q, and 02 is governed by the equation

1
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| L
se/az = e~ w' + (L(0 - kv)/[1 4 BaL(a - KV) + BA L(n, - k)] O~
| | (87

which, using (A3) can be written as
2e/2z = e{f(0y ) - f)} ~ (86)

where £(0) is the second term in the curly bracket in (A5) and

stands for either Q. or 0

91,2 1 5 since

£(0;) = £(n,) (A7)

according to (A3). The solution will be stable only if Ql and

n, are absolute maxima of f(Q). We must therefore have
af (ny)/30 = af(0,)/30 = O, (48)

The four equations (A3) and (A8) completely determine the parameters

Al’ A2, Ql and 92‘
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Pig. 1.

Fig. 2.

Fig. 3.
Fig. 4.

Fig. 5.

Pig. 6;

FIGURE CAPTIONS

-This figure illustrates the integration of Eq. (43)

for 9 discrete freéuencies represented by vertical
lines whose heights are proportional to the intensities,
The phase of each frequency is iniﬁially chosen by a
random number generator. The linear loss is chosen

to be n = 0.3 G.

This figure represents the subdivision of thé Q axis
invoked in Eq. (47).

Lorentzian gain profile,

Evolution of the spectral density according to Eq. (63)
as the radiation propagates thfough the medium. Curves
in order of increasing.peak correspond to z = 0, 40,
80, 120, 160 and 200 in units of the reciproccal gain
(29)_1. The initially flat spectrum (z = 0) cannot

be resolved from the Q-axis because of the extremely

—3). The linear

small input value of the intensity (10
loss 1s taken as » = 0.3 G.

The four frames, corresponding to different values of
the linear loss u, represent the propagation of the
spectrum according to the exact equation (88). In eéch
case, curves in order of increasing peak correspond to
20z = 0, 40, 80, 120, 160 and 200. The first frame may
be compared to Fig. 4 which corresponds to the 3rd order
Eq. (63).

The total energy of the radiation is plotted versus

the distance, for different values of the linear 1085 n,

according to Eq. (88).



Fié. 7. Plot of the Speétralhwidth.versus distance for various
values of the linear loss parameter, according to Eq. (88).

Fig. 8.-"éain profile of Eq. (113) with Ku = % O.ayab,'

Fig. 9. Two-velocity gain profile as given by Eq. (113), with
Ku = £ ygp. '

Fig. 10. 1Integration of Eq. (112) for the case of two discrete
velocities (Ku = * O.2Yab), such that the overall gain
profile has a single peak as shown in Fig. 8. The
spectrum approaches a §-function at the center of the line.
Cdrves in order of increaslng peak correspond to z' = 0,
40, 120 and 200. The linear loss is x' = 0.3.

Fig. 11. 1Integration of Eq. (112) for the case of two discrete
velocities (Ku = % Yab)’ such that the overall gain
profile has a double peak as shown in Fig. 9. The
spectrum evolves, in this case, into two §-functions.
Curves in order of increasing peak height correspond to
z = 0, 40, 120 and 200. The linear loss is x' = 0.3.

Fig. 12. Equation (112) is integrated with a double-peaked input
spectrum. The two discrete velocities are Ku = * O.Eyab
and have equal weights as in Fig. 10.

Fig. 13. Two-velocity gain profile for the case of unequal weights
W(Ku) = 0.6, W(- Ku) = 0.4,

Fig. 14. Evolution of the spectrum when the gain is that of Fig. 13,
Curves in order of increasing sharpness correspond to
z = 0, 40 and 80. The linear loss is x' = 0.3 and the
input value of the spectral density is I(O,Q) = 10"2,
as usual,

Fig. 15. The gain function (126) for the case of a Maxwellian
velocity distribution, with Ku = Yap * ‘

Fig. 16. Graphical determination of the amplitude A from Eq. (144).



Frig. 17.

Fig. 18.“

Fig. 19.

rig. 20.

Plot of the function g(A,Kv) defined in Eq. (151).
Stability curve in the (Ku,x') plane. The shaded
region corresponds to instability.l

Numerical integration of Egq. (112) with Ku = Yab

and ' = 0.3. Curves in order of increasing peak
correspond to z!' = 0, 40, 80, 120, 160 and 200,
Integration of Eq. (112) with Ku = 5Y,y, @nd #' = 0.5,
Besides the flat input spectrum 1ying close to the
frequency axis, the spectral profile is shown at

z! = 40 and z' = 360,
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